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1 The Simulation Experiments

We first describe the experimental setting considered and the staffing algorithm. Then we describe our

simulation algorithm.

1.1 The Experimental Setting

As in most earlier work on queues with time-varying arrival rates, we use the sinusoidal arrival-rate

functions. Here we consider a two-class Mt/M/st +M model with arrival-rate functions in (1.1).

λ1(t) = a1 + b1 sin(d1t) and λ2(t) = a2 + b2 sin(d2t) for 0 ≤ t ≤ T. (1.1)

However, our simulation algorithm is not limited to sinusoidal arrival rate functions. For homogeneous

(class-invariant) service, we determine the time-staffing staffing level based on the aggregate arrival

rate λ ≡ λ1 + λ2. Specifically, we apply the well-know square-root safety staffing rule to the aggregate

model. A crucial quantity is the time-varying offered-load m∞(·) which has a convenient formulas.

Eick et al. (1993) showed that

m∞(t) =

∫ t

−∞
Gc(t− u)λ(u)du = E

[∫ t

t−S
λ(u)du

]
= E [λ(t− Se)]E[S]

where S represents a generic service-time random variable with cumulative distribution function (CDF)

G(t), Gc(t) ≡ 1 − G(t) ≡ P(S > t) and Se denotes a random variable with the associated stationary-

excess CDF, defined by

Ge(t) ≡ P(Se ≤ t) ≡
1

E[S]

∫ t

0
Gc(u)du, for t ≥ 0.
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If S has an exponential distribution (G = M), then m∞ satisfies

ṁ∞(t) = λ(t)− m∞(t)

E[S]
.

Given the formula of the offered-load process m∞(·), we can apply the following formula

st = dm∞(t) + c̃(t)
√
m∞(t)e (1.2)

to determine the staffing level.

If service times are class-dependent, then apply

m∞1 (t) =

∫ t

−∞
Gc

1(t− u)λ1(u)du and m∞2 (t) =

∫ t

−∞
Gc

2(t− u)λ2(u)du.

and then calculate m∞ ≡ m∞1 +m∞2 . We then use the formula in (1.2) to determine the staffing level.

1.2 The Staffing Algorithm

In the paper, we allow a customer in service to be relegated to a high-priority queue (HPQ) when

the staffing level is forced to decrease and all servers are busy. In the simulation, we do not force a

customer out of service if the staffing level is scheduled to decrease. Instead, we release the first server

that becomes available after the time of scheduled staffing decrease.

In practical situations, one usually needs to develop a shift schedule that allows the servers to leave

the system (as st decreases) in the order of their arrival. This can be done by allowing server switching,

as described in §3.2 of Whitt and Zhao (2017). To be more precise, we do not require the customer

in service to stay with the same server until the service is complete, when that server is scheduled to

depart. Instead, we allow the service in progress to be handed off to another available server.

To determine the timing of staffing changes, we exploit the deterministic staffing function, as given

in (1.2). In particular, given that function, we construct a sequence of staffing values {si} and a strictly

increasing sequence of staffing change times such that

s(t) = si for ti−1 ≤ t < ti.

1.3 The Simulation Algorithm

Our simulation algorithm falls under the discrete-event simulation framework where each event occurs

at a particular instant in time and marks a change of state in the system. Between consecutive events,

no change in the system is assumed to occur, that is, the simulation program can directly jump in time

from one event to the next.
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In the simulation experiments, we first calculate the staffing levels and record the times of staffing

changes and the corresponding staffing levels in two vectors. For each simulation run, we start the

system empty at time zero, so that there is an initial warmup period before the system reaches its

steady state. For the most part, the warmup period is easy to interpret in the plots, but it lasts longer

as the service-time variability increases, we could elect to staff to stabilize during the warmup period

too. But we do not do that, because it is not our primary concern. Customer arrivals, departures and

abandonments are simulated in the usual way; see Chapter 7 in Ross (1990). In addition to the time

of abandonment, the algorithm maintains the time of arrival for each customer in queue. At any point

in time, the HoL delay can be computed by taking the difference between the current time and the

arrival time of the HoL customer.

It remains to specify how different scheduling rules are implemented in the simulation experiments.

In both the main paper and the present document, we report the simulation results with three different

scheduling policies, namely, the fixed-queue-ratio (FQR) rule, the head-of-line-delay-ratio (HLDR) rule

and the time-varying-queue-ratio (TVQR) rule.

The FQR rule uses two constants r1 and r2 as ratio (control) parameters. At each departure epoch,

the algorithm looks to see whether there are customers in queue(s). If there is a non-empty queue, the

algorithm compares Q1(t)/r1 with Q2(t)/r2. The algorithm chooses a class-1 customer to enter service

if Q1(t)/r1 > Q2(t)/r2 and chooses a class-2 customer if Q1(t)/r1 < Q2(t)/r2. If there is tie, each class

is chosen equally likely.

Similar to the FQR rule, the HLDR rule uses two constants v1 and v2 as ratio parameters. At each

departure epoch, the algorithm looks to see whether there are customers in queue(s). If there is a

non-empty queue, the algorithm compares the two weighted HoL delays w1(t)/v1 and w2(t)/v2. The

class with a greater weighted HoL delay is chosen to enter service.

The TVQR rule operates in the same way as the FQR control, except that the algorithm uses two

ratio functions (rather than two queue-ratio parameters) r1(·) and r2(·) satisfying

r1(·) =
λ1(·)

λ1(·) + 2λ2(·)
and r2(·) =

2λ2(·)
λ1(·) + 2λ2(·)

and compares Q1(t)/r1(t) with Q2(t)/r2(t) at each decision epoch.

1.4 Data Collection and Statistical Precision

The estimate the mean queue lengths (delays), we record the queue length (delay) of each class at

each departure epoch; i.e., we take each departure epoch to be a sampling time. We then divide the
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time horizon [0, 50] into many small subintervals of length ∆ = 5/24; for each subinterval, we compute

the sample average of all queue lengths (delays) registered over that subinterval. Since the number of

replications is r = 4, 000, we have r values for each subinterval. The final mean queue length (delay)

at each subinterval is then taken to be the sample average of the r values.

To see that our experimental design should provide good statistical precision, consider the stationary

model with aggregate arrival rate a1+a2 = 150. The departure rate therefore is around 150. Over each

subinterval, there are approximately 150 × 5/24 = 31.25 sample points for each replication. Overall,

there are 31.25×4000 = 125, 000 data points within each subinterval. Note that these sample points are

not mutually independent. But the r = 4, 000 sample averages are necessarily statistically independent.

Hence our overall estimate has a variance of order O(10−4) and a std of order O(10−2), which is very

good.

2 The Results of the Experiments

Our base case is the two-class Mt/M/s + M model with (class-invariant) exponential service and the

sinusoidal arrival-rate functions in (1.1) with (a1, a2) = (60, 90), (b1, b2) = (−20, 30), d1 = d2 = 1/2.

Impatience times are exponentially distributed with rates θ1 = θ2 = 0.5. Afterward, we consider

θ1 = θ2 = 0.2 (low abandonment rate) and θ1 = θ2 = 0.8 (high abandonment rate), which helps us

gain insight into the effects of customer abandonment on the system performance. Then we consider

the more difficult case of class-dependent service.

2.1 Exponential Service with Homogeneous Service Rates

Our primary objective is to achieve a desired delay-ratio equal to 1/2. By the analysis of Gurvich

and Whitt (2009) we infer that the long-run average queue-ratio should be approximately equal to

(1/2)(60/90) = 1/3. We would then want to use the FQR rule with target queue-ratio r = 1/3.

With this value, we understand that the ratio Q1/Q2 is expected to be around the target 1/3. In the

simulation, we set c = 0.

2.1.1 The Base Case

We start with a base case where both service and impatience times are exponentially distributed with

rates µ = 1 and θ1 = θ2 = 0.5, respectively.

Figure 3a - 3b report the simulation estimates of the queue length and two types of delays for each

class. The estimates were obtained by averaging over 4, 000 independent replications.
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Panel 3a and Panel 3c show that the ratio of the two time-varying mean queue-lengths is indeed

stabilized at around 0.31, but the plot in Panel 3b and Panel 3c show that the delay ratio is far being

stabilized. The intuition behind Figure 3a - 3c is that how long each arriving customer waits in queue

depends on the future. To elaborate, consider a class 1 customer who arrives at time t at which the

arrival rate of class 1 is decreasing while the arrival rate of the other class is increasing. Then, from

this time onwards, the queue of class 2 tends to build up more rapidly than the other queue. On the

other hand, because the FQR control strives to maintain a fixed queue ratio, the system inevitably

favors class 2 over class 1, i.e., it admits class 2 customers more frequently. As a consequence, any new

arrival to queue 1 is worse off in terms of their waiting time in queue.

Now consider the same model but with the HLDR control where the target delay-ratio v is set at

1/2. Figure 3d - 3e report the simulation estimates of the average queue-length and the head-of-line

delay for each class. Again, these estimates were acquired by averaging over 4, 000 sample paths over

the time horizon [0, T ].

Panel 3d and Panel 3f show that the two average queue-lengths often change in the opposite direction,

but the plot on the right in Figure 3e and Figure 3f show that the delay-ratio is stabilized remarkable

well. Moreover, the system achieves differentiated service without exploiting information about time-

varying arrival rate functions.

As discussed in the paper, an alternative to achieving the desired delay-ratio 1/2 is to use the TVQR

control. Figure 3g - 3h display the mean queue-lengths and the mean head-of-line delays with the

TVQR control. These two plots exhibit similar patterns of Figure 3d - 3e under the HLDR control.

But a closer look at Figure 3i shows the TVQR rule is less effective in stabilizing the delay ratio.

2.1.2 Impact of Customer Abandonment

Comparing Figure 2 and Figure 3 with Figure 1, we observe that customer abandonments have a

significant impact on the performance of different scheduling rules. Indeed, the both the queue ratio and

the delay move further away from the target/desired ratio as the abandonment rate grows. Moreover,

there is fundamental difference between the fluctuations in Figure 1 - 3. We see that these fluctuations

are far less with less customer abandonments, as illustrated by Panel (c), (f) and (i) of the three figures.

Thus, we conclude that the ratio-control rules are less effective with higher abandonment rate.
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2.1.3 Numerical Justification of the HSHT Limit

Here we let the service rates and the abandonment rates be fixed at µ1 = µ2 = 1 and θ1 = θ2 = 0.5,

respectively, but let the system size grows. Figure 4 shows the queue and delay ratios as a function of

system size with QoS coefficient c = 0. Figure 4 suggests that these ratio control rules become more

effective as the scale increases, consistent with our MSHT limits developed in the paper.

2.1.4 Sample Path Little’s Law

In §4 of the main paper we established a sample-path (SP) MSHT Little’s law (LL) that is a consequence

of the MSHT limits in Theorem 4.1 and Theorem 4.2, which is a generalization of the the SP-MSHT-LL

for the stationary model; see e.g., Theorem 4.3 in Gurvich and Whitt (2009). The SP-MSHT-LL states

that, for large scale service systems that are running in the QED MSHT regime,

Qi(t) ≈ λi(t)Vi(t) for all t, (2.1)

where Qi(t) is the queue length, λi(t) is the arrival-rate function and Vi(t) is the potential delay at

time t for class i. In Figure 5, we show the individual samples of the queue length and the actual delay

of each class for our base case. In particular, we plot the sample path of Qi(·) together with the sample

path of λi(·)wi(·) for i = 1, 2, under the three ratio-control rules, namely the FQR, the HLDR and the

TVQR policy. Panel (a) and Panel (b) show that, with the FQR rule, the sample paths change over

time but the two curves agree closely, with error of small order. Panel (c) and Panel (d) suggest that,

with the HLDR rule, the SP-MSHT-LL holds approximately as well. Similarly, Panel (e) and Panel

(f) confirms the SP-MSHT-LL with the TVQR rule.

2.2 Exponential Service with Class-Dependent Service Rates

The foregoing experiments have examined the performance of various scheduling policies with homo-

geneous service times. In most engineering applications, it is desirable to have class-dependent service

times. For this part of the experiments, we assume that all service times are exponentially distributed

but class-dependent. This is equivalent to assuming class-dependent service rates. In particular, we

assume that class-1 and class-2 customers have service rates µ1 = 2/3 and µ2 = 3/2 respectively.

This may reflect what happens in an emergency department where high acuity patients tend to have

a longer length-of-stay (LoS) whereas low acuity patients tend to have a shorter LoS. Figure 6 reports

the simulation estimates of the mean queue lengths and the mean delays in a two-class Mt/M/st +M

model with class-dependent service. The performance under three scheduling policies is remarkably
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similar to the case with homogenous service-time distribution. In particular, the queue ratio is well

stabilized with the FQR rule while the delay ratio is perfectly stabilized with the HLDR rule.

Paralleling §2.1.4 we show in Figure 7 the individual samples of the queue length and the actual

delay of each class for the case of class-dependent service. Consistent with our expectation, these plots

strongly support the SP-MSHT-LL derived in §4 of the main paper.

3 A Realistic Example

In this section, we provide additional simulation results for the example considered in §5 of the main

paper but focusing on the case with zero abandonment.

Here we assume that θ1 = θ2 = 0. From our analysis, we know that the staffing component reduces

to the staffing problem for a single-class Mt/M/st model. We can thus apply the modified-offered-load

(MOL) staffing algorithm for the Mt/M/st model together with HLDR or TVQR scheduling rule to

stability the performance measures at the target level.

Figure 8 depicts the potential delays over the time interval [0, 130] for the HLDR rule (left) and

the TVQR rule (right). We plot the potential delays for both classes. All estimates were obtained by

averaging over 2000 independent replications. Figure 8 shows that it takes significant amount of time

for the system to reach its steady state but the potential delay of each class has a tendency to approach

the associated target.

Figure 9 plots the tail probabilities over the time interval [0, 130] for the HLDR rule (plots at the top)

and the TVQR rule (plots at the bottom). Here we assume that the target tail probability α = 0.5.

We plot the tail probabilities for both classes. All estimates were obtained by averaging over 2000

independent replications. We observe that with zero abandonment performance stabilization becomes

more difficult. Nonetheless, the tail probabilities have a tendency to approach the associated target.
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Figure 1: Statistical summaries for a two-class Mt/M/st+M queue under three scheduling policies with
arrival rate functions λ1(t) = 60− 20 sin(t/2), λ2 = 90 + 30 sin(t/2), service rate µ = 1, abandonment
rate θ1 = θ2 = 0.5 and c̃ = 0.
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Figure 2: Statistical summaries for a two-class Mt/M/st+M queue under three scheduling policies with
arrival rate functions λ1(t) = 60− 20 sin(t/2), λ2 = 90 + 30 sin(t/2), service rate µ = 1, abandonment
rate θ1 = θ2 = 0.2 and c̃ = 0.
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(f) queue & delay ratios (HLDR)
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(g) mean queue lengths (TVQR)
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Figure 3: Statistical summaries for a two-class Mt/M/st+M queue under three scheduling policies with
arrival rate functions λ1(t) = 60− 20 sin(t/2), λ2 = 90 + 30 sin(t/2), service rate µ = 1, abandonment
rate θ1 = θ2 = 0.8 and c̃ = 0.

10



0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

queue ratio

potential delay ratio

HOL delay ratio

(a) FQR (η = 1)
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(b) HLDR (η = 1)
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(c) TVQR (η = 1)
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(d) FQR (η = 2)
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(e) HLDR (η = 2)
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(f) TVQR (η = 2)
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(g) FQR (η = 4)
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(h) HLDR (η = 4)
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(i) TVQR (η = 4)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

queue ratio

potential delay ratio

HOL delay ratio

(j) FQR (η = 8)
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(k) HLDR (η = 8)
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(l) TVQR (η = 8)

Figure 4: Queue and delay ratios as a function in system size for a two-class Mt/M/st + M queue
with arrival rate functions λ1(t) = η · (60− 20 sin(t/2)), λ2 = η · (90 + 30 sin(t/2)), service rate µ = 1,
abandonment rate θ1 = θ2 = 0.5 and c̃ = 0.
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(d) Class 2 (HLDR)
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(e) Class 1 (TVQR)
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Figure 5: Sample paths of Q(t) ≡ (Q1(t), Q2(t)) and w(t) ≡ (w1(t), w2(t)) for the two-class Mt/M/st +
M model with arrival rate functions λ1(t) = η · (60 − 20 sin(t/2)), λ2 = η · (90 + 30 sin(t/2)), service
rate µ = 1, abandonment rate θ1 = θ2 = 0.5 and c̃ = 0.
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(c) queue & delay ratios (FQR)
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(f) queue & delay ratios (HLDR)
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Figure 6: Statistical summaries for a two-class Mt/M/st+M queue under three scheduling policies with
arrival rate functions λ1(t) = 60− 20 sin(t/2), λ2 = 90 + 30 sin(t/2), service rates (µ1, µ2) = (2/3, 3/2),
abandonment rate θ1 = θ2 = 0.5 and c̃ = 0.
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(a) Class 1 (FQR)
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(d) Class 2 (HLDR)
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(e) Class 1 (TVQR)
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Figure 7: Sample paths of Q(t) ≡ (Q1(t), Q2(t)) and w(t) ≡ (w1(t), w2(t)) for the two-class Mt/M/st +
M model with arrival rate functions λ1(t) = η · (60 − 20 sin(t/2)), λ2 = η · (90 + 30 sin(t/2)), service
rate (µ1, µ2) = (2/3, 3/2), abandonment rate θ1 = θ2 = 0.5 and c̃ = 0.
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Figure 8: Potential delays for a two-class Mt/M/st queue with arrival-rate functions λ1(t) = 60 −
20 sin(2t/5), λ2 = 90 + 30 sin(2t/5), common service rate µ = 1 and abandonment rate θ = 0.
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(a) HLDR (α = 0.5)
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Figure 9: Tail probabilities for a two-class Mt/M/st queue with arrival-rate functions λ1(t) = 60 −
20 sin(2t/5), λ2 = 90 + 30 sin(2t/5), common service rate µ = 1 and abandonment rate θ = 0.
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